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Abstract

The familiar Bayesian framework, where observed data is used to update prior
information, via Bayes’s formula, has many desirable features. This project aims to
address shortcomings of this Bayesian approach in two essential problems, namely,
prediction and inference. First, for the prediction problem, the Monte Carlo com-
putation required to obtain a genuine Bayesian predictive distribution can be too
slow for use with streaming data, and a new recursive estimator of the Bayesian
predictive distribution is proposed which is both fast to compute and has desirable
theoretical properties. Second, for the inference problem, there are cases where a
full probability model for all the unknowns is not available and/or is not desirable,
so there is a need for “likelihood-free” Bayesian inference. New tools are developed
to address various theoretical and computational questions related to the use of
so-called Gibbs models for such problems.

1 Statement of the problems

1.1 Problem 1: prediction

Consider the problem where data, Y1, . . . , Yn, . . . are iid from some distribution with a
density function p. After observing Y1, . . . , Yn, the goal is to predict the next observation
Yn+1. More specifically, we desire a rule that converts observations (Y1, . . . , Yn) into a
density function pn which is, in some sense, our “best guess” of the distribution of Yn+1.
This object is usually called a predictive density. A standard way to construct a predictive
distribution is by taking a Bayesian approach. That is, start with a prior distribution Π
for the unknown density p supported on a subset P of all density functions. Then the
Bayesian approach constructs a posterior distribution for p, given (Y1, . . . , Yn), denoted
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by Πn, that satisfies

Πn(B) =

∫
B

∏n
i=1 p(Yi) Π(dp)∫

P
∏n

i=1 p(Yi) Π(dp)
, B ⊆ P.

This allows for a natural construction of a predictive distribution. Given the posterior
Πn, define the predictive density pn for Yn+1, given (Y1, . . . , Yn), as the posterior mean
density, i.e.,

pn(y) =

∫
p(y) Πn(dp).

This Bayesian predictive distribution is logically quite reasonable and, except for some
rather unusual cases, will have good theoretical properties. The downside, however, is
that, for standard choices of prior Π, such as a Dirichlet process mixture model, the Monte
Carlo computations required to evaluate pn are somewhat costly. More concerning is that
updating pn to pn+1 when Yn+1 is observed requires that one redo all the Monte Carlo
computations, so online Bayesian prediction is not possible. The first goal of this project
is to develop a recursive approximation to the Bayesian predictive update, one that does
not require Monte Carlo computations, and has desirable theoretical properties.

1.2 Problem 2: inference

Consider the same general setup as in the previous section, but now the main interest is
in some feature θ = θ(p) of the distribution p. Here θ could be a finite-dimensional vector,
e.g., a set of moments, or could be a function, like in nonparametric regression. From a
non-Bayesian point of view, depending on the setup, it may be possible to produce an
estimator or other kinds of inference for θ without specifying a model for p. For example,
one can easily construct an estimator and an asymptotically correct confidence interval
for a quantile without specifying a model for the underlying distribution p. A Bayesian
approach, on the other hand, requires a likelihood function which, in turn, requires a
model for p. There is no conceptual difficulty to specify a prior Π for p, get a posterior
Πn based on data (Y1, . . . , Yn), and then get a corresponding posterior distribution for θ
via marginalization. The question is why spend the time and resources to specify a prior
distribution for the full distribution p and carry out the potentially non-trivial Monte
Carlo computations to evaluate the posterior distribution of p, when the intention is to
marginalize over everything but θ? A second goal of this project is to develop theoretical
and computational tools that will allow users to carry out a Bayesian analysis working
only on the interest parameter θ, avoiding the unwanted tasks of prior specification and
Monte Carlo computations over the nuisance parameter space.

2 Summary of main results

2.1 Problem 1: prediction

2.1.1 Background

An important special case of the general setup in Section 1.1 is that of a Dirichlet process
mixture model for the density p; see, for example, Lo (1984) and Escobar and West
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(1995). That is, the prior Π models the density p as a mixture∫
K(y | u)G(du),

where K(y | u) is a kernel, and the mixing distribution G is modeled by a Dirichlet process
distribution (Ferguson 1973). By now there is a substantial literature on Monte Carlo
methods to fit this model and compute the corresponding predictive; see MacEachern
and Müller (1998), Neal (2000), Walker (2007), and Kalli et al (2011). However, these
methods do not allow for a mapping from the previous predictive and a new observation,
(pn−1, Yn), to the updated predictive, pn. The burden of requiring Monte Carlo methods
motivated Newton and Zhang (1999) and Newton (2002) to consider an approximation
of the full Dirichlet process mixture model, called predictive recursion, which produced
a recursive estimator of the mixing measure G. Extensive study of Newton’s recursive
estimator is carried out in Tokdar et al (2009) and Martin and Tokdar (2009, 2011).
This estimator is fast and easy to compute but, despite its name, it does not directly
target the predictive density—numerical integration is needed to evaluate normalizing
constants, etc. The goal here is to develop a version of Newton’s method that directly
targets the predictive and, therefore, does not require numerical integration. Interestingly,
to accomplish this goal, we will need to make unexpected use of copulas.

2.1.2 Results

As a candidate for the predictive update, one with a multiplicative structure, consider a
bivariate function k(y, y′) that satisfies

pn(y) = pn−1(y)k(y, Yn).

Therefore,

k(y, Yn) =
pn(y)

pn−1(y)

which is symmetric in (y, Yn), since

k(y, Yn) =

∫
p(y) p(Yn) Πn−1(dp)∫

p(y) Πn−1(dp)
∫
p(Yn) Πn−1(dp)

. (1)

Hahn et al (2015) show that the function k(y, Yn) in (1) is a bivariate copula density
function (Nelsen 1999); that is, for some symmetric copula density cn, which depends on
the sample only through the sample size, we have

k(y, Yn) = cn
(
Pn−1(y), Pn−1(Yn)

)
(2)

where cn(u, v) = cn(v, u) is a symmetric copula density, and Pn−1 is the distribution
function corresponding to the predictive density pn−1.

We can now write the update (pn−1, yn) 7→ pn as

pn(y) = cn(Pn−1(y), Pn−1(yn)) pn−1(y) (3)

and for each Bayesian model there is a unique sequence cn. Now (3) allows for the
direct update of the predictive and moreover it can be seen that all one needs to direct a
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sequence of predictive densities is to define a sequence of copula functions cn, the key to
which is that cn → 1 as n→∞, i.e., the sequence of copula converges to the independent
copula as the sample size increases.

Unfortunately, it is only possible to write down the corresponding copula density cn
for relatively simple parametric models. We can, however, follow Newton’s approach
and build a recursive approximation based on what is known about the Dirichlet process
mixture model. In particular, fix an initial guess P0, with density p0, a sequence of weights
(αn) ⊂ (0, 1), and a correlation parameter ρ ∈ (0, 1). Then, sequentially compute

pn(y) = (1− αn) pn−1(y) + αn pn−1(y)hρ(Pn−1(y), Pn−1(Yn)), n ≥ 1. (4)

where hρ is the Gaussian copula density

hρ(u, v) =
N2(Φ

−1(u),Φ−1(v) | 0, 1, ρ)

N(Φ−1(u) | 0, 1)N(Φ−1(v) | 0, 1)
.

Under some mild regularity conditions on the true density, p?, if the weight sequence
(αn) satisfies

∑
n αn = ∞ and

∑
n α

2
n < ∞, then the recursive predictive pn in (4) is a

consistent estimator, i.e., pn → p? almost surely, as n→∞, with respect to the L1 norm.
In addition to the theoretical consistency results, numerical simulations reveal that the
recursive estimator is fast and easy to compute and also highly accurate.

2.1.3 Further developments

The paper (Hahn et al 2015) that contains these results is currently under revision for
the Journal of the American Statistical Association and, though we cannot be sure of the
outcome at this point, we expect that it will ultimately be accepted there. As part of our
revision, we intend to consider some possible extensions of the results summarized above,
including some dependent-data cases, as well as some multivariate prediction problems.
In part through the work on recursive density estimation for this project, Stephen Walker
and I developed some new ideas for solving classical inverse problems, such as solving
Fredholm equations, using statistical ideas/methods. We recently learned that this new
project will be supported, in part, by the National Science Foundation.

2.2 Problem 2: inference

2.2.1 Background

There are a number of statistical inference problems that are not generally formulated via
a full probability model. Perhaps the most important example of these is when the goal is
inference on quantiles, especially, quantile regression. The usual non-Bayesian approach
to quantile regression, as discussed in Koenker (2005), formulates the problem as one of
optimization, i.e., minimize a measure of the empirical risk, and there is a rich theory
of M-estimation on which to build this framework. A Bayesian approach, on the other
hand, is less straightforward because one is used to building a posterior distribution based
on a prior and a likelihood, but here there is no likelihood. Bayesian quantile regression
has received some attention in the literature, e.g., Yu and Moyeed (2001) and Sriram et
al (2013), and these also make use of the same empirical risk, but the formulation is in
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terms of a misspecified likelihood. This perspective does not make clear, however, how
to approach other problems when no likelihood is present.

A concrete motivating example for this work comes from a medical application in He-
dayat et al (2015). One objective of a clinical trial is assessing the efficacy of a treatment,
but statistical significance alone does not necessarily imply efficacy. For instance, a study
with high power may detect statistically significant differences that do not translate to
practical differences noticeable by the patients. As a result, a cutoff value different than
a statistical critical value is desired that would separate patients with clinically signifi-
cant responses from those patients without a clinically significant response. This cutoff
is deemed the “minimum clinically important difference” (MCID).

Let Y ∈ {−1, 1} denote the patient reported outcome with 1 meaning that the treat-
ment was effective and −1 meaning that the treatment was not effective. Let X be a
continuous diagnostic measure taken on each patient. The MCID, denoted by θ?, satisfies

P{Y 6= sign(X − θ)} = min
θ

P{Y 6= sign(X − θ)},

i.e., θ minimizes, over θ, the probability that sign(X − θ?) disagrees with Y . Here, P is
with respect to the joint distribution of (X, Y ). Since

P{Y 6= sign(X − θ)} = E
{1− Y sign(X − θ)

2

}
,

and the latter can be interpreted as an expected loss, the MCID is understood as an
expected loss minimizer, as discussed above. Note that the MCID is defined without
a model for the distribution of (X, Y ), but estimation can proceed without it; in fact,
Hedayat et al (2015) proceed to estimate the MCID by minimizing an empirical version
of the above expression:

Rn(θ) =
1

n

n∑
i=1

1− Yi sign(Xi − θ)
2

. (5)

How could one solve this problem from a Bayesian perspective? One could introduce a
probability model, and priors for the model parameters, and compute the corresponding
posterior, but the results surely would depend on the particular choice of model, which
may not be correct. Moreover, the probability model likely would depend on other
nuisance parameters, not just on θ alone, and this complicates the problem even further.
It would be desirable to produce a posterior distribution for θ directly, without worrying
about if the model is wrong or dealing with nuisance parameters.

Bissiri et al (2016) recently showed that a logical Bayesian prior-to-posterior update
can be carried out in cases where only a loss function, and not a likelihood, is available.
Their update corresponds to the so-called Gibbs posterior which has been used occasion-
ally in the statistics and machine learning literature. In particular, suppose the inference
problem is defined by a loss function that admits a corresponding empirical risk function
Rn(θ) like that in (5). Then the Gibbs posterior distribution satisfies

Πn(dθ) ∝ e−wnRn(θ) Π(dθ), (6)

where Π is a prior distribution for θ and w > 0 is a scale parameter. Note that the Gibbs
posterior in (6) involves no nuisance parameters, so investments in prior specification
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and posterior computations can be focused on the parameter of interest. Compare this
to standard Bayesian methods that require a prior and posterior for everything. Although
the Gibbs posterior does depend on w, it often maintains good theoretical properties over
a range of w values, and its finite-sample performance may even be improved by using
data-dependent choices of w; see Syring and Martin (2015ab).

2.2.2 Results

There are three main issues addressed in this project. First, to see the benefit of the
Gibbs approach, important examples need to be identified. Second, with motivation
coming from some interesting and important applications, what are the general properties
that Gibbs posterior distribution would satisfy, in particular, asymptotic concentration
properties? Third, there will be computational challenges to be overcome in order to
implement the proposed methodology. In what follows, we will summarize the results
obtained on each of these points.

In terms of applications, the two previously mentioned, namely, MCID and quantile
regression, are important ones, and these are addressed specifically in Syring and Martin
(2015ab). The MCID problem is essentially a classification problem, so there are a
variety of extensions of this that would be of interest. In particular, Hedayat et al (2015)
investigate an interesting personalized MCID problem where the MCID is actually a
function of some patient-specific characteristics; some preliminary work on a Bayesian
approach to this problem has been completed, but more details remain to be filled in.
There are a few other interesting applications that we have started working on, and we
discuss these in more detail in Section 2.2.3 below.

In terms of general theory, we have shown in Syring and Martin (2015b) that, under
very general conditions, the Gibbs posterior distribution will concentrate around the
true θ? at the same rate as the corresponding M-estimator, i.e., the estimator obtained
by minimizing the empirical risk function Rn(θ). In addition, we have shown that any
reasonable choice of the scale w, even one that depends suitably on n, will not affect
the Gibbs posterior concentration rate. Extensions of these concentration rate results to
handle adaptivity are currently being completed; see Section 2.2.3 below.

In terms of computation, there are several issues. In simple finite-dimensional prob-
lems, such as MCID or quantile regression, it is relatively straightforward to compute
the Gibbs posterior using the standard Metropolis–Hastings machinery. On the other
hand, in nonparametric problems with infinite-dimensional parameters, things are not so
easy. Indeed, the standard Bayesian computational methods employed in these problems
often take advantage of some structure—conjugacy or otherwise—to simplify things but,
of course, the empirical risk function is unlikely to have any such structures. We have
been addressing this issue case-by-case so far, but progress has been made.

Finally, one last point that fits in with all three of the categories mentioned above
is the choice of the scaling parameter w in (6). It does not have an effect on the Gibbs
posterior concentration rate, but it does have an effect on the finite sample performance.
What criterion should be used to make a good choice of w? In Syring and Martin (2015b),
we proposed to choose w such that the corresponding Gibbs posterior credible regions are
calibrated, i.e., so that the credible regions are also confidence regions. The algorithm
to make this choice uses a combination of bootstrap and stochastic approximation. Sur-
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prisingly, this choice of w leads to exact nominal coverage probability in our simulation
examples, for each fixed sample size, not just asymptotically.

2.2.3 Further developments

The papers listed above (Syring and Martin 2015ab) are both currently under revision,
and we expect to get these back into the review pipeline shortly. The results are good but,
so far, it seems we have not been able to make clear what are the main contributions. In
addition to these two papers, we have one more that is near completion. This latter paper
considers the problem of nonparametric estimation of the boundary of an image based
on noisy intensity measurements at pixels. This is a particularly challenging problem
for the classical Bayesians because they have to specify the intensity distribution inside
and outside the image. This introduces nuisance parameters and potential bias if the
models are misspecified. He have developed a Gibbs posterior approach that is easy to
compute—based on a suitable reversible jump Markov chain Monte Carlo method—and
enjoys adaptive optimal concentration rates. We are particularly excited about this work,
and we expect it will be completed by the end of May 2016.

There are many other potential applications to be explored within this Gibbs model
framework. One that has caught my attention is in the Lévy process models that often
appear in financial applications, i.e., models for continuous-time/streaming data that
allow for the possibility that the sample paths have jump discontinuities. For such models,
often the quantity of interest is the Lévy density, which is what controls the size and
frequency of jumps. Even if the model is fully specified, neither writing down/evaluating
the likelihood function nor simulating the data-generating process is straightforward, so
Bayesian methods have not been used. A Gibbs model, however, is fairly straightforward
to implement and can directly target the Lévy density, avoiding nuisance parameters,
etc. This is an exciting problem and I hope to make some progress this summer.

3 Student training

This STIR award provided support for one of my students, Nick Syring, during Summer
and Fall of 2015. The work completed while Nick was supported by the ARO will make
up a significant portion of his doctoral thesis. I have taken a new job at North Carolina
State University, starting in Fall 2016, and Nick will be joining me there. His thesis will
surely acknowledge the gracious support from the ARO.
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